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Are there Genuine Mathematical Explana-
tions of Physical Phenomena?
Alan Baker

Many explanations in science make use of mathematics. But are there cases where
the mathematical component of a scientific explanation is explanatory in its own
right? This issue of mathematical explanations in science has been for the most part
neglected. I argue that there are genuine mathematical explanations in science, and
present in some detail an example of such an explanation, taken from evolutionary
biology, involving periodical cicadas. I also indicate how the answer to my title ques-
tion impacts on broader issues in the philosophy of mathematics; in particular it
may help platonists respond to a recent challenge by Joseph Melia concerning the
force of the Indispensability Argument.

1. The Indispensability Argument

A central metaphysical debate in the philosophy of mathematics is
between platonists, who postulate the existence of a realm of mind-
independent, abstract mathematical objects, and nominalists, who
deny the existence of such a realm. Much of the recent literature on the
platonism–nominalism debate has focused on the pros and cons of the
so-called ‘Indispensability Argument’. Briefly stated, this argument
claims that we ought rationally to believe in the existence of mathemat-
ical objects because we ought to believe our best available scientific the-
ories, and quantification over mathematical objects is indispensable for
science.

As it stands, the phrase ‘indispensability for science’ is vague. What,
exactly, is the scientific purpose (or purposes) for which mathematics is
supposed to be indispensable? Platonists typically sidestep this question
by rephrasing the indispensability claim to state that our ‘best’ scientific
theories quantify over mathematical objects. This style of response is
holist, because the sole arbiter of ontological legitimacy is quantifica-
tion by entire theories. More fine-grained questions concerning the
theoretical role of individual posits are set aside, thus no analysis is
required below the level of whole theories. This reliance on holism cre-
ates internal tensions within the platonist position. The origins of this
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holism component of indispensabilist platonism trace back to Quine,
who was an arch-holist about confirmation. On his view, the various
posits of a theory can only be confirmed in toto, and distinctions
between the precise role of different posits do not matter. But not all
platonists are holists, and it would be useful to have a version of the
Indispensability Argument that did not rely so crucially on holism.
Indispensabilist platonism also faces problems accounting for our
apparent non-commitment to idealized concrete posits such as fric-
tionless slopes, ideal gases, and infinitely-deep fluids.1 Many of these
posits play important—maybe even indispensable—roles in our best
scientific theories; as it stands, the platonist lacks the resources to rule
these ideal entities ontologically out of contention. If they are indeed
indispensable then it seems we ought to believe in them. Finally, by
staying at the level of whole theories, indispensabilist platonism fails to
make manifest the variety of roles which mathematics plays in science.
This makes it easier for the nominalist to dismiss mathematics as
merely a calculational device or a descriptive shorthand.2

1.1 Indispensability and explanation
The Indispensability Argument has been recently criticized by the pro-
nominalist Joseph Melia. These criticisms have sparked an exchange
between Melia and the pro-platonist, Mark Colyvan, conducted over
the course of three papers in recent issues of Mind. (Melia (2000), Coly-
van (2002), Melia (2002)) One of Melia’s targets is the issue of the role
for which mathematics is purportedly indispensable. Melia’s claim, in a
nutshell, is that indispensability is not enough: mathematics must be
indispensable in the right way. This requires the platonist to be more
specific about the theoretical role which mathematics plays in science.
Despite their opposing positions, Colyvan and Melia agree that estab-
lishing platonism stands or falls on whether specific examples can be
found from actual scientific practice in which ‘the postulation of math-
ematical objects results in an increase in the same kind of utility as that
provided by the postulation of theoretical entities’ (Melia 2002, p. 75).3

1 Maddy refers to this as the ‘Scientific Practice Objection’ in Maddy (1992).

2 See, for example, Balaguer (1998, p. 137) for one version of this ‘narrow’ characterization of
mathematics.

3 It needs to be the ‘same kind’ of utility to avoid begging the question against the nominalist;
the platonist does not have to provide an independent defence of the ontological legitimacy of this
kind of utility, if indeed it can be found, because the nominalist already appeals to it to justify her
belief in electrons, quarks, and other theoretical concrete posits.
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In this case, the mathematical postulates would have virtues that the
nominalist has already conceded carry ontological weight.

One candidate for this kind of utility stands out, given the implicit
endorsement of scientific realism by both the platonist and nominalist
sides in the indispensability debate. A crucial plank of the scientific
realist position involves inference to the best explanation (IBE) to justi-
fies the postulation in particular cases of unobservable theoretical enti-
ties. Of course there are many philosophers who are not scientific
realists, and alternative positions (notably constructive empiricism) are
often based on a rejection of IBE in some or all cases. Nonetheless, the
indispensability debate only gets off the ground if both sides take IBE
seriously, which suggests that explanation is of key importance in this
debate. It is no coincidence that both Colyvan and Melia explicitly
endorse explanatory power.4 And Hartry Field, one of the more infl-

uential recent nominalists, writes that the key issue in the platonism–
nominalism debate is ‘one special kind of indispensability argument:
one involving indispensability for explanations’ (Field 1989, p. 14).

We are interested, therefore, in cases where the postulation of mathe-
matical objects yields explanatory power. A key strategic point of the
indispensability-based approach is to focus on external applications of
mathematics, since otherwise it is open to charges of circularity. Thus we
shall not be discussing mathematical explanations of mathematical facts.
And since our concern here is with the application of mathematics to sci-
ence, the explanandum of any putative example must be some physical
phenomenon. This brings us to my title question: are there genuine
mathematical explanations of physical phenomena? The answer is of
immediate relevance to the Indispensability Argument, and thereby to an
important strand of the current debate between platonists and nominal-
ists over the existence of abstract mathematical objects.

Both Colyvan and Melia attempt to tip the debate in their favour,
Colyvan by presenting some alleged examples of mathematical expla-
nations in science, and Melia by arguing on general grounds against the
likelihood (or even possibility) of any such examples. I shall begin by
reviewing of each of their efforts.

1.2 Colyvan’s example of mathematical explanation
Colyvan is sympathetic to the view that pure mathematics can be genu-
inely explanatory with respect to physical phenomena. His strategy for

4 ‘[T]here’s no doubt that explanatory power is a theoretical virtue (at least for scientific real-
ists).’ (Colyvan 2002, p. 72); ‘explanatory power of a theory is also a virtue of a theory … .’ (Melia,
2002, p. 75)
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bolstering this claim is to present various examples from scientific
practice. Consider the following meteorological example.

We discover that at some time t0 there are two antipodal points p1
and p2 on the earth’s surface with exactly the same temperature and
barometric pressure. What is the explanation for this coincidence?
(Colyvan 2001, p. 49)5

Colyvan claims that there are actually two coincidences which need to
be explained;

(1) Why are there any such antipodal points?

(2) Why p1 and p2 in particular?

He argues that there is a purely causal story which can (in principle) be
told to explain (2), based on the detailed prior histories of the weather
patterns in the vicinity of p1 and p2. However this causal story fails to
explain (1). As Colyvan puts it, the causal story ‘does not explain why p1
and p2 have the same temperature and barometric pressure, just why
each has the particular temperature and pressure that they have, and
that these happen to be the same’ (Colyvan 2001, p. 49). The explana-
tion for this sameness lies in a corollary of the Borsuk-Ulam theorem,
from algebraic topology, which implies that there are always antipodal
points on the earth’s surface which have the same temperature and bar-
ometric pressure. Colyvan claims that the proof of this theorem pro-
vides the missing part of the explanation of (1).

I have no quibbles with the basic structure of Colyvan’s example, but
I have reservations about whether it is genuinely explanatory. First, the
chances of actually finding two such antipodal points are presumably
very remote; they are not something that we are likely to stumble across
by accident. Nor are they something that meteorologists would search
for unless they already knew about the result of the mathematical theo-
rem. In other words, the explanandum would probably not suggest
itself to us unless and until we had the explanans in hand. If this is
right, then what Colyvan presents here, at least prima facie, is not an
explanation but a prediction. Secondly, even if meteorologists did dis-
cover two such antipodal points, would they consider this a phenome-
non that was in need of explanation? Colyvan suggests that a criterion
for adequate explanation is that it ‘must make the phenomena being

5 It should be noted that Colyvan offers this example in the context of arguing for the possibil-
ity of noncausal explanations. However it is clearly also relevant to answering Melia’s challenge.
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explained less mysterious.’ (Colyvan 2001, p. 47) I am doubtful whether
in this case there really a mystery here to be reduced in the first place.6

1.3 Melia’s counterargument
Two of Colyvan’s other examples of putative mathematical explanation
are from the theory of relativity and each refers to the geometry of
Minkowski space-time. The first example involves the bending of light
near to massive bodies, and the second example involves the FitzGer-
ald-Lorentz contraction of moving bodies along their direction of
motion. Melia is unconvinced by these examples. His principal objec-
tion is that, even if the mathematical apparatus is indispensable, its role
in these and similar cases is merely to pick out or ‘index’ efficacious
physical objects or properties;

[W]hen we come to explain [physical fact] F, our best theory may offer as an
explanation ‘F occurs because P is �2 metres long’. But we all recognize that,
though the number �2 is cited in our explanation, it is the length of P that is
responsible for F, not the fact that the length is picked out by a real number.
(Melia 2002, p. 76)

T2 expresses the fact that a is ⁷⁄₁₁ meters from b by using a three place predi-
cate relating a and b to the number ⁷⁄₁₁, nobody thinks that this fact holds in
virtue of [this relation]. Rather, the various numbers are used merely to in-
dex different distance relations, each real number corresponding to a differ-
ent distance. (Melia 2000, p. 473)

One interpretation of the above passages is that the mathematical appa-
ratus in these cases is not genuinely explanatory because the role of the
numbers �2 and ⁷⁄₁₁ is arbitrary. The charge of arbitrariness is correct up
to a point, since facts about which specific numbers figure an the expla-
nation of a given physical fact are relative to a (more-or-less) arbitrary
choice of units. However the platonist could argue that the level of
focus here is too fine-grained. She is not arguing that individual num-
bers are indispensable for science or play an explanatory role in science,
but rather that certain mathematical theories are indispensable and
explanatory. Thus in the above examples it may be the case that quanti-
fication over the real numbers is necessary even though quantification
specifically over �2, for example, is not.7 Arbitrariness of this sort is a

6 It is ironic, given this worry, that Colyvan uses the term ‘coincidence’ in describing his exam-
ple. In everyday parlance, coincidences are phenomena for which no further explanation is re-
quired.

7 It might be objected that even this claim is too strong, since all that is really necessary is some
mathematical structure isomorphic to the real numbers, for example an appropriately chosen col-
lection of sets. For more on how issues of multiple reducibility in mathematics impact the Indis-
pensability Argument see Baker (2003).
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general feature of geometrically-based examples of mathematical appli-
cation, a feature common to all of Colyvan’s examples.

Nor is arbitrariness the only problem with geometrically based cases.
Another problem arises from the ambiguity in the subject matter of
geometry, in particular whether this subject matter is mathematical or
physical. Individual geometrical terms such as ‘triangle’ may refer
either to mathematical or to physical objects, and the historical trajec-
tory of Euclidean geometry, from descriptor of physical space to free-
standing formal system, shows a similar bridging of the mathematics/
physics boundary at the level of geometrical theories. This is one reason
why nominalists often object that geometrical explanations are not
genuinely mathematical. And it suggests that we should look elsewhere
than geometry for a convincing case of mathematical explanation in
science

A second interpretation of Melia’s ‘indexing’ remarks is that refer-
ence to �2 or ⁷⁄₁₁ is not explanatory in the above examples because these
numbers are acausal. If all explanation (at least of physical phenomena)
is causal explanation, then this yields a quite general objection to the
possibility of combining a platonist view of mathematics with the thesis
that there are genuine mathematical explanations of physical phenom-
ena. This interpretation fits with Melia’s remarks in other passages
which suggest that his underlying problem with putative examples of
mathematical explanation stems from mathematical objects lacking
any causal role. He argues, for example, that what distinguishes the
postulation of quarks from the postulation of mathematical entities is
that in the former case ‘the complex objects owe their existence to these
fundamental objects’ (Melia 2000, p. 474). However, I do not think that
Melia means to rule out the possibility, at least in principle, of non-
causal explanations of physical phenomena, for his remarks elsewhere
seem to leave this issue as an open question to be settled by empirical
investigation, as for example when he writes that ‘there may be applica-
tions of mathematics that do result in a genuinely more attractive pic-
ture of the world’ (Melia 2000, p. 474).8 Perhaps there is still some room
for Melia to squeeze out of this verdict, for example by arguing that the
sorts of utility which mathematics may possess do not include explana-
tory power. But if this were his intention then it would be obtuse of him
not to state it explicitly. Moreover, even if Melia does decide to take a
stand against the possibility of noncausal explanation, this is a separate

8 He also states that it is ‘only by a careful analysis of the uses to which mathematics is put [that
we will] be able to judge whether or not the indispensability argument supports Platonism’ (Melia
2002, p. 76).



Are there Genuine Mathematical Explanations of Physical Phenomena? 229

Mind, Vol. 114 .  454 . April 2005 © Baker 2005

issue, one that is far from settled, and substantive argument would be
needed to support this position. In other words, it seems that the ‘no
noncausal explanation’ thesis is not one to which the nominalist can
appeal without begging some pivotal questions.

The Melia–Colyvan debate, it seems fair to conclude, has not been
conclusively resolved by either side. Colyvan has not come up with any
unequivocal cases of mathematical explanation in science, and Melia
has not given any non-question-begging grounds for thinking that such
explanations are impossible, or even unlikely. My goal in the next sec-
tion is to settle the debate in Colyvan’s favour by presenting a detailed
example of a genuinely explanatory application of mathematics to sci-
ence.

2. Case study: periodical cicadas

My principal case study, featuring a genuinely mathematical explana-
tion of a physical phenomenon, is drawn from evolutionary biology. Its
subject is the life-cycle of the so-called ‘periodical’ cicada. North Amer-
ica is home to several species of cicada, large fly-like insects (often erro-
neously referred to as ‘locusts’) notable for the shrill calls they produce
by rubbing their wings against their bodies. Three species of cicada of
the genus Magicicada share the same unusual life-cycle. In each species
the nymphal stage remains in the soil for a lengthy period, then the
adult cicada emerges after either 13 years or 17 years depending on the
geographical area. Even more strikingly, this emergence is synchronized
among all members of a cicada species in any given area. The adults all
emerge within the same few days, they mate, die a few weeks later and
then the cycle repeats itself.

2.1 What needs to be explained?
Biologists have long found features of the life-cycle of periodical cicadas
mysterious, and this is reflected both in the substantial literature
devoted to this topic and in biologists’ specific remarks.9 There are at
least five distinct features of this life-cycle for which explanations have
been sought by biologists;

(i) The great duration of the cicada life-cycle.

(ii) The presence of two separate life-cycle durations (within each
cicada species) in different regions.

9 For example, that ‘[p]eriodical cicadas are among the most unusual insects in the world.
(Yoshimura 1997, p. 112)



230 Alan Baker

Mind, Vol. 114 .  454 . April 2005 © Baker 2005

(iii) The periodic emergence of adult cicadas.

(iv) The synchronized emergence of adult cicadas.

(v) The prime-numbered-year cicada life-cycle lengths.

Features (i) and (ii) concern the temporal range of the life-cycle. Biolo-
gists have argued that the long life-cycle of Magicicada is due both to
the poor availability of nutrients for nymphs, and to the low soil tem-
peratures for much of the year. Together these environmental stresses
force nymphs to spend several years maturing into adults. Each of these
negative factors is less pronounced in the southern regions of Magici-
cada’s range. Hence it is not surprising that life-cycle lengths are shorter
for each species in the southern parts of the U.S. In short, both (i) and
(ii) seem explicable in terms of specific ecological constraints.

Features (iii) and (iv) concern coordination of the life-cycles of dif-
ferent individuals. Given that cicada nymphs require several years to
develop into adults, and that the adult stage is very brief, having a fixed
periodic emergence is advantageous in terms of maximizing mating
opportunities. It ensures that the offspring of a particular mating gen-
eration will all appear at the same time, several years down the line.
Synchronization makes sense for the same reason. Especially in areas
which can support only a sparse population of cicadas, staggering dif-
ferent subpopulations to emerge at different times may produce so few
adults at any one time that it is difficult to find mates. These explana-
tions of (iii) and (iv) rely on (evolutionary) biological ‘laws’ which
potentially apply to any organism with a long life-cycle and brief adult
stage.

2.2 Explaining prime cycles
This leaves feature (v) to be explained, and with it one key question to
be answered: why are the life-cycle periods prime? In other words, given
a synchronized, periodic life-cycle, is there some evolutionary advan-
tage to having a period that is prime? If so, this would help explain why
13 and 17 are the favoured cycle periods for each of the three species of
the genus Magicicada. In seeking to answer this question, biologists
have come up with two basic alternative theories.

An explanation of the advantage of prime cycle periods has been
offered by Goles, Schulz and Markus (2001) (henceforth, GSM) based
on avoiding predators. GSM hypothesize a period in the evolutionary
past of Magicicada when it was attacked by predators that were them-
selves periodic, with lower cycle periods. Clearly it is advantageous—
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other things being equal—for the cicada species to intersect as rarely as
possible with such predators. GSM’s claim is that the frequency of
intersection is minimized when the cicada’s period is prime;

For example, a prey with a 12-year cycle will meet—every time it
appears—properly synchronized predators appearing every 1, 2, 3, 4,
6 or 12 years, whereas a mutant with a 13-year period has the advan-
tage of being subject to fewer predators. (Goles et al. 2001, p. 33)

A second explanation, proposed by Cox and Carlton and by Yoshimura,
concerns the avoidance not of predators but of hybridization with sim-
ilar subspecies. (Cox and Carlton 1988, 1998, Yoshimura 1997). A crucial
factor for periodical insects is to have sufficient mating opportunities
during their brief adult stage. Almost as important, however, is to avoid
mating with subspecies that have different cycle periods to their own.
For example, if some of a (hypothetical) population of synchronized
10-year cicadas were to mate with some 15-year cicadas then their
offspring would likely have a period of around 12 or 13 years. These
hybrid offspring would emerge well after the next cycle of the 10-year
cicadas and hence their mating opportunities would be severely cur-
tailed.10 Yoshimura considers a putative stage in the evolutionary past
where there were several subspecies of cicada with periods in the 14- to
18-year range. He shows how 17-year cicadas would intersect least often
with cicadas of other periods in this range. Yoshimura explicitly con-
nects these results to the fact that 17 is a prime number.11

2.3 A shared number theoretic basis
The mathematical underpinnings of both the predation and the
hybridization explanations lie in number theory, the branch of mathe-
matics which investigates the often deep and subtle relationships
between the integers. The mathematical link between primeness and
minimizing the intersection of periods involves the notion of lowest
common multiple (lcm). The lcm of two natural numbers, m and n, is
the smallest number into which both m and n divide exactly; for exam-
ple, the lcm of 4 and 10 is 20. Assume that m and n are the life-cycle
periods (in years) of two subspecies of cicada, Cm and Cn. If Cm and Cn
intersect in a particular year, then the year of their next intersection is
given by the lcm of m and n. In other words, the lcm is the number of

10 A further disadvantage is that hybrid offspring are likely to differ even among themselves
with respect to life-cycle length.

11 Yoshimura (1997), p. 115
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years between successive intersections. In fact the fundamental prop-
erty in this context is not primeness but coprimeness; two numbers, m
and n, are coprime if they have no common factors other than 1 (i.e.
neither number is divisible by the other). All that is needed to underpin
the above explanations are the following two number-theoretic results.

Lemma 1: the lowest common multiple of m and n is maximal if and
only if m and n are coprime.12

Lemma 1 implies that the intersection frequency of two periods of
length m and n is maximized when m and n are coprime. We get from
coprimeness to primeness simpliciter with a second result;

Lemma 2: a number, m, is coprime with each number n < 2m, n � m
if and only if m is prime.

The mathematics for the predation explanation is already contained in
the above two Lemmas. Predators are assumed to have relatively low
cycle periods. It therefore suffices to show that prime numbers maxi-
mize their lcm relative to all lower numbers. More formally, we need to
show that for a given prime, p, and for any pair of numbers, m and n,
both less than p, the lcm of p and m is greater than the lcm of n and m.
But this follows directly from Lemmas 1 and 2. Furthermore, only
prime numbers maximize their lcm’s in this way, so in this respect
primes are optimal.

Hybridization is assumed to occur only between subspecies with
similar period lengths. The range of alternative periods that count as
‘similar’ will depend on the biological details—Yoshimura assumes a
range of 4 or 5 years in the case of cicadas. It therefore suffices for the
mathematical underpinnings of the hybridization explanation to estab-
lish that prime numbers maximize their lcm relative to other ‘nearby’
numbers. This follows immediately from Lemmas 1 and 2. Consider a
prime, p, and a range [p�r, p+r]. Assuming r <p,13 the other numbers
in the range are all between 1 and 2p, hence p is coprime with all of
them, from Lemma 2.

2.4 The structure of the explanation
The basic structure common to the predation and hybridization expla-
nations is as follows;

12 For proofs of all lemmas, see Landau (1958).

13  This implies that the range is ‘small’ with respect to p.
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(1) Having a life-cycle period which minimizes intersection with
other (nearby / lower) periods is evolutionarily advantageous.
[biological ‘law’]

(2) Prime periods minimize intersection (compared to non-prime
periods).
[number theoretic theorem]

(3) Hence organisms with periodic life-cycles are likely to evolve
periods that are prime. [‘mixed’ biological / mathematical law]

When the law expressed in (3) is combined with

(4) Cicadas in ecosystem-type, E, are limited by biological con-
straints to periods from 14 to 18 years.14[ecological constraint]

it yields the specific prediction

(5) Hence cicadas in ecosystem-type, E, are likely to evolve 17-year
periods.

What we have, then, is a five-step argument which—through plugging
in the different ecological constraints in step (4)—aims to explain the
phenomenon of cicadas having 13- and 17-year periods. The explana-
tion makes use of specific ecological facts, general biological laws, and
number theoretic results. My claim is that the purely mathematical
component, (2), is both essential to the overall explanation and genu-
inely explanatory in its own right. In particular, it explains why prime
periods are evolutionarily advantageous in this case. Thus (in the terms
used by Melia and Colyvan) this application of mathematics yields
‘explanatory power’.

3. Is the cicada example a genuinely mathematical explanation?

The cicada example is only helpful to the platonist position if it meets
the three conditions mentioned in sections 1.1 and 1.2. The first condi-
tion is that the application be external to mathematics. It is clearly met
by this example since the phenomenon being explained—the period
length of cicadas—lies outside the realm of pure mathematics. The sec-
ond condition is that the phenomenon in question must be in need of
explanation. This condition is met, since the life-cycle of periodical

14 Clearly a parallel constraint may be formulated for 13-year cicadas, in which the ecosystem
limits potential periods to the range from 12 to 15 years.
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cicadas is considered ‘remarkable’ and ‘mysterious’ by biologists them-
selves, as is evidenced by the quotes cited earlier in the paper. A third
condition for genuine explanation is that the phenomenon must have
been identified independently of the putative explanation (otherwise it
is more like a prediction). This is true in the cicada case. Cicadas with
13- and 17-year cycles were known prior to any explanation involving
primeness, indeed they were discovered over 300 years ago, well before
the development of number theory as a freestanding branch of mathe-
matics.

There seems to be little doubt, therefore, that the cicada example is a
case of genuine explanation, and that it involves reference to mathe-
matical objects. But is it a genuine mathematical explanation? Melia, in
his discussion of Colyvan’s example involving Minkowski space-time,
raises the following objection.

True, when we come to give the geometric explanation of a certain relativis-
tic fact, we may find ourselves indispensably using mathematical objects. But
it doesn’t follow from this that mathematical objects play a part in the expla-
nation itself, or add to the explanatory power of the theory … (Melia 2002,
p. 76)

I do not see how one can coherently deny that mathematical objects
play a part in the explanation. However, it does not follow from this
that all explanations involving mathematics are ipso facto mathematical
explanations, and this is how I read the second part of Melia’s worry.

What needs to be checked in the cicada example, therefore, is that the
mathematical component of the explanation is explanatory in its own
right, rather than functioning as a descriptive or calculational frame-
work for the overall explanation. This is difficult to do without having
in hand some substantive general account of explanation. The philo-
sophical analysis of explanation is itself a thorny issue (and not one we
shall attempt to settle here), but it may be useful to canvas the three
leading contemporary philosophical accounts of explanation—the
causal account, the deductive-nomological account, and the pragmatic
account—to see if any of them can fruitfully be applied in the present
context.

According to the causal account, explaining a phenomenon involves
giving a description of its various causes. Clearly this account is incom-
patible with the existence of any genuine mathematical explanations,
since mathematical objects (if they exist) are acausal. Hence this
account is not helpful for the current debate since to adopt this account
is effectively to beg the question against the platonist.15

15  This same point arose in section 1.3 in response to certain of Melia’s remarks.
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According to the deductive-nomological account, explaining a phe-
nomenon involves constructing an inference of the phenomenon from
premises which include statements of general laws of nature. The layout
of the cicada explanation in section 2.4 has this form. But does the
deductive-nomological model have the resources to distinguish explan-
atory from non-explanatory components of explanations? One point in
the platonist’s favour is that the purely mathematical premiss (2) of the
cicada inference is in the form of a general law, in this case a theorem of
number theory. A broadening of the category of laws of nature to
include mathematical theorems and principles, which share commonly
cited features such as universality and necessity, would count the math-
ematical theorem (2) as explanatory on the same grounds as the biolog-
ical law (1).

According to the pragmatic account, explaining a phenomenon
involves providing an answer to a ‘why’-question which shows how the
phenomenon is more likely than its alternatives. This is the sketchiest of
the three accounts, but perhaps also the most useful in the present con-
text. It suggests that genuinely explanatory applications of mathematics
ought to be reconfigurable as answers to questions about why a certain
physical phenomenon occurred. This parallels cases of explanation
involving concrete theoretical posits, which are unproblematic com-
mon ground for both platonists and nominalists in the indispensability
debate. Why is the light from certain distant galaxies getting bent?
Because there is a black hole between us and the distant galaxies. Why
do periodical cicadas have prime periods? Because prime numbers
minimize their frequency of intersection with other period lengths. In
each case we have a naturally motivated why-question paired up with a
(partial) answer. And in each case the answer seems genuinely explana-
tory.16

It is time to take stock. We have surveyed three accounts of explana-
tion. The two of these accounts which allow for the possibility of mathe-
matical explanations both support the claim that the cicada case study
is an example of a genuinely explanatory application of mathematics to
science. The third, causal account of explanation rules out the possibil-
ity of mathematical explanations; however this account is problematic
for independent reasons. Finally, the alleged explanatoriness of the
number theoretic component of the cicada case study seems to mesh

16 It should be noted that advocates of the pragmatic account of explanation, for example van
Fraassen, often combine this account with a broader anti-realist stance which rejects unrestricted
use of inference to the best explanation. However, there seems to be no reason why the pragmatic
account cannot instead be combined with versions of realism.
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well both with our intuitions and with the intuitions expressed by biol-
ogists working in this area.

The nominalist is not without potential challenges to the explanato-
riness of this case study. However, I think that the nature of the cicada
example blocks several of the more promising lines of objection. As we
saw in section 1.3, Melia’s favoured objection—for instance to Coly-
van’s Minkowski space-time examples—is that the mathematical appa-
ratus merely serves to pick out or ‘index’ efficacious physical objects
and properties. This boils down to the allegation that the role of mathe-
matical objects in such cases is arbitrary. The platonist can concede that
arbitrariness of this sort is a frequently encountered feature, especially
of geometrically-based examples of mathematical application. How-
ever, since the cicada example is based on number theory rather than
on geometry, it is better placed to meet this objection. There is nothing
arbitrary about the role of 13 and 17 in this case. The units in which
periods are measured, namely years, are not chosen on an ad hoc basis
but are rooted in the physical features of the example. And the mathe-
matical explanation makes reference to a specific feature of 13 and 17,
namely their primeness, which is not possessed by arbitrary integers.

The cicada example is also well-placed to meet a second objection to
geometry-based applications of mathematics, also mentioned in sec-
tion 1.3. This stems from the issue of the ambiguity in the subject mat-
ter of geometry, in particular whether this subject matter is
mathematical or physical. By contrast with geometry, number theory
deals with the intrinsic mathematical properties of the natural num-
bers, and as such is an archetype of a pure mathematical theory. Indeed
there is ongoing fascination, especially among mathematicians, with
the fact that number theory is applicable at all.17

5. Conclusions

I have argued that there are genuine mathematical explanations of
physical phenomena, and that the explanation of the prime cycle
lengths of periodical cicadas using number theory is one example of
such. If this is right, then applying inference to the best explanation in
the cicada example yields the conclusion that numbers exist.

Whatever cases of putative mathematical explanation the platonist
might come up with, there will always be some leeway for nominalist
objections since the role of mathematical posits is unlikely ever to
exactly match the role of concrete unobservables, such as electrons.

17  See, for example, Schroeder (1992) on the ‘unreasonable effectiveness’ of number theory.
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Nonetheless, I think that the cicada example bolsters the platonist posi-
tion both internally and externally. From an internal perspective, the
platonist has reduced the reliance of the Indispensability Argument on
holism, thus allowing for a potential distinction to be drawn between
mathematical posits and idealized concrete objects such as frictionless
slopes and perfect spheres.18 The external benefit of focusing on the
cicada example (and doubtless other examples with similar force can be
found) is that it shifts the burden of proof onto the nominalist.
Mathematics—specifically number theory—plays a genuinely explan-
atory role in accounting for the cycle lengths of periodical cicadas. The
mathematical apparatus in this case in neither arbitrary nor is it
straightforwardly dispensable. It therefore presents a challenge to any
nominalist, such as Melia, who leaves open the possibility of genuine
mathematical explanations of physical phenomena.
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